Uncubed
           

Machine Learning Engineer

Triplebyte, San Francisco

Helping Engineers Find Great Startups


About Triplebyte
Triplebyte helps companies find and hire great technical talent. For any company building software, this is crucial for success. A recent survey of top C-Level Executives, across multiple industries, showed that software, R&D and recruiting technical talent are the top areas they are planning increased investment and budget over the next 5 years. Companies like Apple, Dropbox and American Express trust Triplebyte’s online technical assessment to identify the best engineers for their open roles and reduce the time and effort it takes to hire them.

We just raised a $35 million Series B and our team of 40 will double in size during 2019. Now is a great time to join as we're on an exciting growth trajectory. You will have lots of opportunity for taking on responsibility and developing new skills quickly.
 
We have built Machine Learning models that predict the likelihood of an engineer getting an offer from a particular company. Interviewing and assessing engineering talent tends to be noisy, but our technical assessment has proven to be good enough to extract meaningful signals. We collect data on interview results and in-house evaluations, which gives us a unique dataset to play with. We've used that data to deliver a 40% conversion rate on our candidates at interview to offer, compared to the industry standard 20%.

Our mission is to create a scientific method for identifying great talent and intelligently route it to the best place, streamlining and speeding up the recruitment process, while removing human biases that can hold back some candidates.

Press Links
You can read more about our company and hear from our founders in the press here:


You can also read some case studies with a few of our partner companies like Box, Instacart, Mixpanel and Gusto and also learn more about us on our press page.

We're an experienced team, the founders have each built and sold companies before. Ammon and Guillaume founded Socialcam (acquired by Autodesk for $60 million) and Harj was the first partner hired at Y Combinator since its founding.

Triplebyte screens and evaluates thousands of engineers per month to find the best candidates for our partner companies. Human decision making doesn't work at our scale; our marketplace is powered by automated assessment and decision making. Triplebyte has three cornerstone ML products: our quiz, our interview, and our matchmaking. As a machine learning engineer, you'll be responsible for the end-to-end process of designing and running experiments to serving production models at scale. Some of our pipelines use off the shelf components, but we're also implementing custom models and techniques from the latest research papers. We're also building forecasting tools for internal teams to measure and predict outcomes. This is an ideal role for an engineer or data scientist who wants the scope and responsibility to own features/products from the inception and research phase through to measuring real-world results.

Fields your work will touch on

  • Psychometrics
  • Recommender systems
  • Time series analysis
  • Survival analysis
  • Bayesian inference
  • Probabilistic programming

Requirements

  • Robust exploratory/experimental skills. We have a novel dataset of candidate profiles and interview outcomes from our candidate screening process and our hiring marketplace. You'll be responsible for designing and evaluating experiments to predict downstream outcomes.
  • Ability to implement models from research. Some of our best improvements in both speed and predictiveness has come from doing literature surveys and implementing novel techniques from research papers.
  • Engineering skills. This is a hybrid research/engineering role. You'll be responsible for productionizing your pipelines/models and integrating against our back-end services.
Compensation and Benefits
Competitive salary and stock options package
Open vacation policy
Employer paid health, vision and dental insurance
401(k) plan with matching
Pre-tax commuter benefits
Daily catered lunches

Our Mission
We believe strongly in building a truly meritocratic, unbiased process for finding great talent. Even the best technology companies today still use where people went to college as a proxy for intelligence and ability. We're building a process that looks only at ability, not credentials, so we can have a future where everyone can focus on just learning and being good at what they do, not how they look on paper.

Every aspect of running a company has been improved over the last decade, except hiring. Most decisions are still made using amorphous terms like "gut feel" or "culture fit". They should be made using crisp data. Only a company specializing on this problem, using data collected from the hiring process at hundreds of companies, can solve it. That's the company we're building. Our mission is creating a scientific method for identifying great talent and intelligently routing it to the best place. Starting with software engineers.

About Triplebyte

We believe the current technical hiring process doesn’t do enough to help engineers show their strengths. At Triplebyte, we’re dedicated to building a better process. OUR ORIGINS Hiring is something that resonated deeply with all three of our founders. Hiring is hard. It’s something our founders understand well. Before starting Triplebyte, Harj was the first partner at Y Combinator, where young companies often struggle to hire their first employees. Guillaume and Ammon were working on Socialcam (later acquired by Autodesk in 2012 for $60M), where they also experienced firsthand the challenges of hiring. Triplebyte was founded on the belief that the current technical hiring process doesn’t do enough to help engineers show their strengths. Our founders started Triplebyte to help engineers find great jobs by assessing their abilities without relying on the prestige of their resume credentials.

Triplebyte

Want to learn more about Triplebyte? Visit Triplebyte's website.